Vielecke und PolyederPlatonic

Zu Beginn dieses Kurses haben wir regelmäßige Vielecke als besonders "symmetrische" Vielecke definiert, bei denen alle Seiten und Winkel gleich sind. Wir können etwas Ähnliches für Polyeder tun.

In einem regelmäßigen Polyeder sind alle Flächen regelmäßige Vielecke von derselben Art und an jeder Ecke trifft die gleiche Anzahl von Flächen aufeinander. Polyeder mit diesen beiden Eigenschaften werden als platonische Körper bezeichnet, benannt nach dem griechischen Philosophen Platon.

Wie sehen also die platonischen Körper aus - und wie viele von ihnen gibt es? Um eine dreidimensionale Form zu erhalten, benötigen wir mindestens Flächen, die sich an jeder Ecke treffen. Beginnen wir systematisch mit dem kleinsten regelmäßigen Vieleck: gleichseitige Dreiecke: